Has my stock been accused of fraud?Join over 160k users who know.

Ticker Price Change($) Change(%) Shares Volume Prev Close Open Gain($) Gain(%)
Ticker Status Jurisdiction Filing Date CP Start CP End CP Loss Deadline
Ticker Case Name Status CP Start CP End Deadline Settlement Amt
Ticker Name Date Analyst Firm Up/Down Target ($) Rating Change Rating Current

News

BioVie Presents Data Showing Potential For Bezisterim To Reduce Inflammation And Restore Homeostasis In A Manner Correlated With Alzheimer's Disease And Biomarker Endpoints

Author: Benzinga Newsdesk | April 25, 2024 08:29am
  • "Bezisterim" has been approved as the non-proprietary name for NE3107

     
  • Data shows how bezisterim may be restoring homeostasis via specific genes associated with dementia, metabolism, and inflammation

CARSON CITY, Nev., April 25, 2024 (GLOBE NEWSWIRE) -- BioVie Inc. (NASDAQ:BIVI), ("BioVie" or the "Company"), a clinical-stage company developing innovative drug therapies to treat chronic debilitating conditions including neurological and neuro-degenerative disorders and liver disease, today announced that an oral presentation and poster revealing additional data on how bezisterim potentially restores homeostasis was presented at the 12th Annual Alzheimer's & Parkinson's Drug Development Summit held in Boston, Massachusetts April 23-25.

The presentation Clinical Outcomes and Biomarker Findings from a Randomized, Placebo-Controlled Trial of Bezisterim in Subjects with Mild to Moderate Probable Alzheimer's Disease was presented yesterday by Christopher Reading, PhD, BioVie's Senior Vice President, Alzheimer's Disease Program.

The data presented were based on further analysis of data generated from BioVie's Phase 3 trial in Alzheimer's disease (AD) that was unblinded at the end of 2023. The DNA methylation dataset assessed the extent of DNA methylation on roughly 965,000 individual sites where methyl groups can be attached to the patients' DNA.

"We all age and get older – nothing can change that. But these data provide evidence that bezisterim may have the potential to help keep people healthier for a longer time as we age," said Cuong Do, BioVie's President and CEO. "BioVie believes that DNA methylation may not need to constantly increase as we age, and thus the progression of age-related disease may not be uni-directional. Bezisterim is believed to be the first drug candidate that has shown in clinical trials the ability to modulate the level of DNA methylation, and do so in a manner that's correlated with disease. But we are only at the beginnings of exploring the full potential of this unique molecule and how it can help modulate the progression of age-related diseases."

DNA methylation is a natural process where methyl groups are added to the surface of DNA, thereby interfering with the body's natural process for decoding genetic information. DNA methylation accumulates as people age and can be affected by behavioral (diet, exercise) and environmental factors. Hypermethylation of DNA has been associated with a large number of diseases, including age-related cognitive impairment and dementia, Parkinson's disease (PD), various forms of cancers, cardiovascular disease (CVD), chronic obstructive pulmonary disease (COPD) and respiratory disease, chronic kidney disease (CKD), inflammatory bowel disease (IBD), sepsis and many others.1 Inflammation has been shown to be a driver of hypermethylation of DNA,2 and the extent of DNA methylation can be measured by various "biological clocks."

Newly presented data show that patients treated with bezisterim experienced an age deceleration advantage over patients treated with placebo on four biological clocks, in addition to previously published advantage on the SkinBlood Clock3 (-3.68 years, p=0.017). Age deceleration is the difference between a person's biological age as measured by various DNA methylation clocks and their actual age since birth. A lower value is preferable and suggests that the biological age is lower than the actual age. Bezisterim-treated patients saw -4.77 years advantage on the Inflammation Age Clock4 (p=0.022), -5.0 years advantage on the Hannum Age Clock5 (p=0.006), -1.92 years advantage on the GrimAge Clock6 (p=0.068), and -3.71 years on the PhenoAge Clock7 (p=0.081).

Bezisterim's ability to reduce DNA methylation appears to target 21 specific genes identified thus far. Statistically significant correlations were found between DNA methylation levels for 15 genes and various clinical measures for bezisterim-treated patients whereas such relationship did not exist among placebo patients. This suggests that the DNA methylation levels among placebo patients accumulated to such an extent that they disrupted the natural linkage between the gene and the clinical measure, and that bezisterim was able to restore such homeostatic relationships. One example of this phenomenon involves the transmembrane protein 237 (TMEM237) gene, which is associated with neurodevelopment delays. Significant correlations were found between improvements in the DNA methylation levels for this gene and improvements in various clinical cognitive assessments among bezisterim-treated patients whereas no such correlations were seen among placebo patients.

Additionally, placebo patients saw statistically significant correlation between DNA methylation levels for 6 pro-inflammatory genes and clinical measures, while bezisterim-treated patients saw no correlations. This suggests that bezisterim disrupted the negative consequences of DNA methylation that promotes inflammation and restored homeostasis.

The impact of DNA methylation and bezisterim's activity can also be seen at a cellular level. Myeloid lineage cells (monocytes, macrophages, astrocyte and microglia) exist in a continuum between two extremes of promoting inflammation and tissue destruction (M1 and A1 state) and anti-inflammatory, phagocytic and tissue repair (M2 and A2 state). Placebo patients saw a significant correlation between their Monocyte DNA Methylation Clock and the monocyte levels in their blood samples. No such correlation exists, however, for bezisterim-treated patients, suggesting that bezisterim's impact on DNA methylation may be changing the monocyte DNA methylome from a pro-inflammatory to an anti-inflammatory state (M1 → M2 transition hypothesis).

The name "bezisterim" has been approved as the non-proprietary (generic) name for NE3107 by the United States Adopted Names (USAN) Council and World Health Organization (WHO) International Nonproprietary Names (INN) expert committee.

Posted In: BIVI

CLASS ACTION DEADLINES - JOIN NOW!

NEW CASE INVESTIGATION

CORE Finalist